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Abstract

Importance sampling is a technique that is commonly used to speed
up Monte Carlo simulation of rare events. However, little is known
regarding the design of efficient importance sampling algorithms in the
context of queueing networks. The standard approach, which simulates
the system using an a priori fixed change of measure suggested by large
deviation analysis, has been shown to fail in even the simplest network
setting (e.g., a two-node tandem network).

Exploiting connections between importance sampling, differential
games, and classical subsolutions of the corresponding Isaacs equa-
tion, we show how to design and analyze simple and efficient dynamic
importance sampling schemes for general classes of networks. The
models used to illustrate the approach include d-node tandem Jackson
networks and a two node network with feedback, and the rare events
studied are those of large queueing backlogs, including total population
overflow and the overflow of individual buffers.
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1 Introduction

For more than two decades, there has been a growing of interest in fast
simulation techniques for estimating probabilities of rare events in queueing
networks. Among the available techniques importance sampling, a method
in which the system is simulated under a different probability distribution
(i.e., change of measure), has received much attention [12, 2].

The standard approach to importance sampling for queueing considers
an a priori fixed and static change of measure that is suggested by large
deviation analysis. This approach was shown to lead to efficient importance
sampling algorithms for simulating large buildups of a single/multiple server
queue [1, 15]. However, rather little success has been accomplished in ex-
tending this standard heuristic to networks of queues. In even the simplest
network setting, such as a two-node tandem Jackson network, the change
of measure suggested by the standard heuristic, which amounts to exchange
the arrival rate and the smallest service rate [14], fails to be asymptotically
optimal in general [11] and can lead to importance sampling estimators with
infinite variance [3]. This failure is in fact due to the discontinuities of the
state dynamics on the boundaries of the state space. Such discontinuities
are not present in the case of a single queue.

The purpose of the present paper is to present a framework under which
one can systematically build simple and efficient dynamic (i.e., state-dependent)
importance sampling schemes for simulating rare events in queueing net-
works. Our method heavily exploits a recently discovered connection be-
tween importance sampling and deterministic differential games [7, 8] and
the role of classical subsolution of the Isaacs equation associated with the
game [9, 10]. We demonstrate that one can construct classical subsolutions
that lead to simple and efficient importance sampling schemes. As in [10],
such subsolutions will be identified as the mollification of the pointwise min-
imum of affine functions.

To illustrate the main idea, we focus in much of the paper on d-node
tandem Jackson queueing networks. The rare events of interest are various
types of buffer overflows, including total population overflow and individ-
ual buffer overflows. We also discuss extensions to more general queueing
networks. To the best of our knowledge, the present paper is the first to
provide a rigorous theoretical framework in which one can build asymptot-
ically optimal importance sampling algorithms for rare events in networks
of queues.

The paper is organized as follows. Section 2 gives a brief review of the
basics of importance sampling. In Section 3, we study in detail the classical
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problem of total population overflow in two-node tandem Jackson networks.
Restricting to the two-node case permits a presentation of all the key steps
in the subsolution approach with a minimum of notational inconvenience.
The generalization to d-node tandem Jackson networks and general buffer
overflow problems will be discussed in Section 4. We address the application
of the subsolution approach to a two-node Jackson network with feedback in
Section 5. To ease exposition, most proofs are collected in the appendices.

2 Basics of importance sampling

The basic idea of importance sampling is to use a change of measure, that
is, the system is simulated under a different probability distribution and
the outcomes are multiplied by appropriate likelihood ratios (i.e., Radon-
Nikodým derivatives) to form unbiased estimators.

We specialize to the estimation of rare event probabilities and consider
a family of events {An} in a probability space (Ω, F, P) such that

lim
n

−1
n

log P(An) = γ

for some positive constant γ. In order to estimate P(An), importance sam-
pling generates samples under a probability measure Q such that P is ab-
solutely continuous with respect to Q, and forms an estimator by averaging
independent replications of

p̂n
.= 1An

dP

dQ
,

where dP/dQ is the Radon-Nikodým derivative, or the likelihood ratio. Al-
though Q may depend on n, to simplify the notation this is not made explicit.
It is easy to check that this importance sampling estimator is unbiased since

EQ[p̂n] = P(An).

Its rate of convergence is determined by the variance of p̂n. Since the last
display holds, minimizing the variance is accomplished when one minimizes
the second moment, which can be written

[2nd moment of p̂n] = EQ[p̂2
n] = EP[p̂n]. (2.1)

The smaller the second moment, the faster the convergence. However,
Jensen’s inequality implies that

lim sup
n

−1
n

logEQ[p̂2
n] ≤ lim sup

n
−2

n
logEQ[p̂n] = 2γ.
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In other words, the exponential decay rate of the second moment can be
at most twice that of the probability. We say the importance sampling
estimator is asymptotically optimal if the upper bound is achieved, i.e., if

lim inf
n

−1
n

logEP[p̂n] ≥ 2γ.

Sometimes 2γ is referred to simply as the “optimal decay rate.”

Remark 2.1. The requirement that P be absolutely continuous with respect
to Q is more stringent than necessary. It is sufficient that P be absolutely
continuous with respect to Q on a sub-σ-algebra that contains An, in which
case the likelihood ratio is defined as the Radon-Nikodým derivative of P and
Q when they are restricted on this sub-σ-algebra. In this paper, the changes
of measure will be applied to a sequence of iid random variables {Y (k)}, and
will be restricted to the σ-algebra generated by {Y (k)} up until the time
either the buffer overflow happens or the system returns to the empty state.
Note that when considered on the full σ-algebra generated by {Y (k)}, it is
typical that P is singular with respect to Q.

3 Two-node tandem Jackson networks

To illustrate the main idea of the game/subsolution approach toward im-
portance sampling, we specialize to two-node Jackson tandem queueing net-
works, where the arrival process is Poisson with rate λ and the service times
are distributed exponentially with rates µ1 and µ2, respectively. The system
is assume to be stable, that is, λ < min{µ1, µ2}.

λ
µ1 µ2

Suppose that the two queues share one buffer with capacity n, and that
we are interested in the overflow probability

pn
.= P {network total population reaches n before returning to 0,

starting from 0} .

This overflow problem was among the first to be studied in the literature
on importance sampling for networks, and has served as a benchmark since
then [14]. One reason for the interest in this particular event is that it can
be used to get bounds on various related probabilities.
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Rescaling the time variable will have no effect on pn, and so without
loss of generality we assume λ + µ1 + µ2 = 1. Since exchanging the order
of service rates does not affect this probability [17], we further assume that
µ2 ≤ µ1. Under these conditions, we have the large deviation limit [11]

lim
n

−1
n

log pn = log
µ2

λ

.= γ. (3.1)

3.1 The standard heuristic

Based on a heuristic application of large deviation analysis, [14] proposed a
state-independent importance sampling algorithm for estimating pn, which
amounted to interchanging the arrival rate and the smallest service rate.
That is, under the new measure, the system has arrival rate µ2 and con-
secutive service rates µ1 and λ. Even though [14] offered no theoretical
justification, numerical experiments suggested good performance of the cor-
responding importance sampling estimator for a certain range of parameters.

A rigorous analysis of this importance sampling algorithm first appeared
in [11], in which the authors showed that the algorithm is asymptotically
optimal in certain subsets of the set of all possible parameters. However,
it was also shown that the asymptotic optimality fails for some parameter
values, such as when the two service rates µ1 and µ2 are nearly equal and
the arrival rate λ is small. A recent paper [3] extended the results in [11] and
showed that the importance sampling estimator can have infinite variance
for certain parameters. Additional discussion on importance sampling for
queueing networks can be found in the survey paper [12].

To the best of our knowledge, the present paper is the first to present
an asymptotically optimal (or even provably good!) importance sampling
scheme for even the relatively simple class of all stable two-node tandem
Jackson networks.

3.2 The system dynamics

The system state can be described by the embedded discrete time Markov
chain Z = {Z(k) : k = 0, 1, 2, . . .}, which is defined on a probability space
(Ω, F, P). The state represents the queue lengths at the transition epochs of
the tandem network: Z(k) = (Z1(k), Z2(k)) where Zi(k) is the length of the
queue at node i after the k-th transition. Obviously, Z can only take values
at Z2

+ and pn equals the probability that Z1 +Z2 reaches n before returning
to 0, given that the system is initially empty.
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At times when both queues are non-empty, the increments of the Markov
chain Z take values in the space

V
.= {v0 = (1, 0), v1 = (−1, 1), v2 = (0,−1)} ,

with v0 corresponding to an arrival and vi to a service at node i for i = 1, 2.
On the boundary where either queue is empty, the dynamics exhibit different
behaviors. Suppose that the queue at node i (i = 1, 2) is empty. Then it
is impossible for the process Z to have increment vi since it will lead to
negative queue size. One way to describe this discontinuity in dynamics is
to allow Z to make fictitious jumps of size vi on the boundary, but they
have to be accounted for by “pushing back” the state along the direction of
constraints

di = −vi,

so that the state process Z stays non-negative.
To summarize, the evolution of the Markov chain Z can be modeled by

equation
Z(k + 1) = Z(k) + π[Z(k), Y (k + 1)], (3.2)

where Y = {Y (k) : k ≥ 1} is a sequence of random variables taking values
in the space V, and the mapping π is defined for every z = (z1, z2) ∈ R2

+

and y ∈ V as

π[z, y] .=
{

0, if zi = 0 and y = vi for some i = 1, 2
y, otherwise

. (3.3)

The distribution of Z is completely determined by that of the sequence
Y = {Y (k)}. Define

P+(V) .= {θ = (θ0, θ1, θ2) : θ is a probability measure on V

and θi = θ[vi] > 0 for every i = 0, 1, 2}.

Under the (true) probability measure P, Y is a sequence of independent
identically distributed (iid) random variables with distribution

Θ .= (λ, µ1, µ2) ∈ P+(V).

3.3 The dynamic importance sampling algorithms

The importance sampling schemes we consider use state-dependent changes
of measure that can be characterized by stochastic kernels Θ̄n[·|·] on V given
R2

+, i.e, Θ̄n[·|x] ∈ P+(V) for every x ∈ R2
+.
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v2

v0

v1

z2

z1

d1

d2

Figure 1: The system dynamics

To be more precise, for a given threshold n, define the scaled state process
Xn = Z/n, where Z is defined as in (3.2). Since the definition of π implies
π[nx, y] = π[x, y] for every x ∈ R2

+, it is not difficult to see that Xn satisfies
the equation

Xn(k + 1) = Xn(k) +
1
n

π[Xn(k), Y (k + 1)], (3.4)

with initial condition Xn(0) = Z(0)/n = 0. The importance sampling
generates {Y (k)} as follows. The conditional probability of Y (k + 1) = vi,
given {Y (j) : j = 1, 2 . . . , k}, is just Θ̄n[vi|Xn(k)] for each i = 0, 1, 2.

Define the hitting times

Tn
.= inf{k ≥ 0 : Xn

1 (k) + Xn
2 (k) = 1}

T0
.= inf{k ≥ 1 : Xn

1 (k) = Xn
2 (k) = 0}.

Let An be the event of interest, that is,

An = {Xn
1 + Xn

2 reaches 1 before returning to 0} = {Tn < T0}.

The importance sampling estimator is just

p̂n = 1An ·
Tn−1∏
k=0

Θ[Y (k + 1)]
Θ̄n[Y (k + 1)|Xn(k)]

. (3.5)

7



The second moment of p̂n, thanks to (2.1), equals EP[p̂n]. The goal is
to choose a stochastic kernel Θ̄n so that this second moment (whence the
variance of p̂n) is as small as possible. Another important consideration is
that one would like Θ̄n to be simple and easy to implement.

Remark 3.1. The standard heuristic importance sampling algorithm simu-
lates the system using the state independent change of measure under which
{Y (k)} is iid with distribution Θs = (µ2, µ1, λ). This corresponds to the spe-
cial choice of stochastic kernel Θ̄n with Θn[·|x] ≡ Θs for every x.

3.4 Notation and terminology

Before we proceed to construct importance sampling algorithms, we collect
in this section some notation and terminology. Define

D̄
.= {(x1, x2) : xi ≥ 0, x1 + x2 ≤ 1} ,

D
.= {(x1, x2) : xi > 0, x1 + x2 < 1} ,

∂1
.= {(0, x2) : 0 < x2 < 1} ,

∂2
.= {(x1, 0) : 0 < x1 < 1} ,

∂e
.= {(x1, x2) : xi ≥ 0, x1 + x2 = 1} ,

D̄n
.= D̄ ∩ {(z1, z2)/n : (z1, z2) ∈ Z2

+},
Dn

.= D ∩ {(z1, z2)/n : (z1, z2) ∈ Z2
+}.

Sometimes we refer to ∂e as the “exit boundary.”

x1

x2

1

1

∂e

D

d1

d2

∂1

∂2

Figure 2: Domains and boundaries
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3.5 The Isaacs equation

The main purpose of this section is to derive the Isaacs equation associated
with the limit differential game that lies underneath importance sampling al-
gorithms. The derivation will be kept formal. A rigorous argument, though
possible, is not necessary for our purpose.

Recall our goal is to choose a stochastic kernel Θ̄n so as to keep the second
moment EP[p̂n] as small as possible. We can think of this as a stochastic
control problem and write down the corresponding Dynamic Programming
Equation (DPE). To this end, we extend the dynamics and let, for every
x ∈ D̄n,

Vn(x) .= inf
Θ̄n

EP
x [p̂n] = inf

Θ̄n
EP

x

[
1An ·

Tn−1∏
k=0

Θ[Y (k + 1)]
Θ̄n[Y (k + 1)|Xn(k)]

]
,

where p̂n is defined in exactly the same fashion as in Section 3.3 and EP
x

denotes expected value conditioned on Xn(0) = x.
For simplicity, we further assume that x ∈ Dn, whence π[x, y] ≡ y for

every y ∈ V. Under the original probability measure P, the sequence {Y (k)}
is iid with distribution Θ. Hence the DPE

Vn(x) = inf
Θ̄∈P+(V)

2∑
i=0

Vn

(
x +

1
n

vi

)
Θ[vi]
Θ̄[vi]

·Θ[vi]

holds. Consider a logarithmic transform of Vn and define

Wn(x) .= −1
n

log Vn(x).

We have

Wn(x) = sup
Θ̄∈P+(V)

−1
n

log
2∑

i=0

exp
{
−nWn

(
x +

1
n

vi

)
− log

Θ̄[vi]
Θ[vi]

}
Θ[vi].

A key step in the derivation is to apply the relative entropy representation
for exponential integrals to the right-hand-side of the last equation. For
completeness, we include the representation in its general form in Remark
3.3. It follows that

Wn(x) = sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
2∑

i=0

Wn

(
x +

1
n

vi

)
θ[vi]

+
1
n

(
2∑

i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ)

)]
.
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Note that taking infimum over θ ∈ P+(V) is equivalent to taking infimum
over θ ∈ P(V) since by Remark 3.3 the minimizing θ is mutually absolutely
continuous to Θ , whence it belongs to P+(V).

Suppose for now that Wn(x) converges to W (x). Formally assume the
approximation

Wn

(
x +

1
n

vi

)
− Wn(x) ≈ 1

n
〈DW (x), vi〉,

where DW is the gradient of W . Observing
∑

θ[vi] = 1, we arrive at

0 = sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
〈DW (x), F(θ)〉+

2∑
i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ)

]
, (3.6)

where

F(θ) .=
2∑

i=0

θ[vi] · vi (3.7)

for each θ ∈ P+(V). Equation (3.6) is called an Isaacs equation.
We now discuss the boundary conditions. For the exit boundary, we have

by definition Vn(x) = 1 or Wn(x) = 0, therefore we impose the Dirichlet
boundary condition

W (x) = 0, for x ∈ ∂e. (3.8)

For ∂1 and ∂2, we impose the Neumann boundary condition that is typically
associated with constrained dynamics [13]

〈DW (x), di〉 = 0, for x ∈ ∂i. (3.9)

Finally, we make a few remarks on the game interpretation of importance
sampling. The Isaacs equation (3.6) indicates that the underlying game
has two players. The player who chooses the change of measure in order
to minimize the second moment (i.e., Θ̄) becomes the maximizing player
in the game due to the negative sign in the logarithmic transform. The
minimizing player is artificially introduced, and chooses θ. We will refer
to this player as the “large deviation player.” The dynamics of the game
are completely determined by θ, or the choice of the large deviation player,
while the running cost of the game depends on the choices of both players.

Remark 3.2. The original dynamics have initial condition x = 0, and W (0)
characterizes the asymptotic exponential decay rate of the second moment.
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Remark 3.3. Relative Entropy Representation for Exponential Integrals.
Let (S, F) be a measurable space and f : S → R a bounded measurable
function. Denote by P(S) the space of probability measures on (S, F). Then
for any γ ∈ P(S),

− log
∫

S
e−f dγ = inf

θ∈P(S)

[
R(θ‖γ) +

∫
S

f dθ

]
.

Furthermore, the minimizer of the right-hand-side exists and is mutually
absolutely continuous with respect to γ. Here the relative entropy R(·‖·) is
defined as

R(θ‖γ) .=

⎧⎨
⎩
∫

S
log

dθ

dγ
dθ, if θ � γ

∞ , otherwise
.

We refer the readers to [4, Proposition 1.4.2] for the proof.

3.6 The properties of the Hamiltonian

Our construction of importance sampling algorithms is based on classical
subsolutions to the Isaacs equation. Therefore, it is useful to study the
properties of this equation. To this end, define for each p ∈ R2

H(p) .= sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
〈p, F(θ)〉+

2∑
i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ)

]
. (3.10)

The function H is called the Hamiltonian, and the Isaacs equation (3.6) can
be written as

H(DW ) = 0. (3.11)

We have the following result, whose proof is deferred to Appendix C.

Proposition 3.4. Let H be defined as in (3.10).

1. For each p = (p1, p2) ∈ R2, there exists a saddle point (Θ̄∗(p), θ∗(p)) ∈
P+(V) × P+(V) given by

Θ̄∗(p) = θ∗(p) = N (p)
(
λe−p1/2, µ1e

(p1−p2)/2, µ2e
p2/2
)

,

where
N (p) .=

[
λe−p1/2 + µ1e

(p1−p2)/2 + µ2e
p2/2
]−1

.

In particular, the order of sup and inf can be exchanged in (3.10).
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2. We have the representation

H(p) = inf
θ∈P+(V)

[〈p, F(θ)〉+ 2R(θ‖Θ)] = 2 logN (p).

In particular, H is concave.

Figure 3 is a picture of the zero-level curve of H. Recall that γ, as defined
in (3.1), equals log(µ2/λ).

r2

r3

r1

H(p) ≥ 0

p1

r̄2

r1 = 2γ(−1,−1)
r2 = 2γ(−1, 0)
r3 = (0, 0)
r̄2 = 2 log(µ1/λ)(−1, 0)

p2

Figure 3: Hamiltonian H

Remark 3.5. For any p ∈ R2, we will refer to Θ̄∗(p) as the (saddle point)
change of measure corresponding to p.

3.7 The solution to the Isaacs equation

In [7, 8], the saddle point strategy generated by the solution to the Isaacs
equation was used to construct efficient importance sampling schemes. How-
ever, viscosity solutions to the Isaacs equation (3.11) and boundary condi-
tions (3.8), (3.9), which are only weak-sense solutions, are not suitable for
the purpose of constructing efficient importance sampling algorithms for this
tandem Jackson network.

More precisely, consider the very simple, affine function

Ws(x) .= 〈r1, x〉+ 2γ.

This function is a viscosity solution to the Isaacs equation (3.11) and bound-
ary conditions (3.8), (3.9). It is in fact the maximal viscosity solution, and

12



is the “physically significant” solution, in the sense that Ws(x)/2 equals the
asymptotic decay rate of pn when X(0) = x. Even though Ws(0) = 2γ, the
optimal decay rate, the saddle point strategy corresponding to Ws does not
lead to efficient importance sampling algorithms. Indeed, thanks to Propo-
sition 3.4 and straightforward calculation, the Θ̄-component in the saddle
point is

Θ̄∗(DWs) = Θ̄∗(r1) = (µ2, µ1, λ),

which is exactly the state-independent change of measure Θs based on stan-
dard heuristic; see Section 3.1.

As remarked previously, the failure of the importance sampling based on
Ws is due to the fact that Ws is only a weak-sense viscosity solution. It is
not a classical solution (or even a classical subsolution as defined in the next
subsection), since on the boundary ∂2

〈DWs, d2〉 = 〈r1, d2〉 = −2γ < 0.

In a sense that we will make precise later on, this inequality is in the “wrong”
direction, which suggests that the (artificial) large deviation player, who
determines the game dynamics, may be able to exploit this “bad” boundary
to a degree that the importance sampling estimator based on Ws becomes
inefficient. It is not coincidental, as observed in [11], that the inefficiency of
Θs in general is because a sample path can spend a significant amount of
time near boundary ∂2 before leaving domain D and thereby accumulate a
huge Radon-Nikodým derivative.

Remark 3.6. This example shows even when there is an ostensibly smooth
viscosity solution to the Isaacs equation, it may not always lead to efficient
importance sampling algorithms.

3.8 Subsolutions and importance sampling schemes

The idea of [9, 10] is that classical subsolutions to Isaacs equations can be
used to construct efficient importance sampling schemes. It has advantages
over solution-based importance sampling schemes in simplicity, greater flex-
ibility, and general applicability. The goal of this section is to construct
classical subsolutions and identify the corresponding changes of measure.
The analysis of the asymptotic behaviors of the importance sampling esti-
mator will be carried out in Appendix B.

Definition 3.7. A function W : D̄ → R is said to be a classical subsolution
to the Isaacs equation (3.11) and boundary conditions (3.8), (3.9) if

13



1. W is continuously differentiable,

2. H(DW (x)) ≥ 0 for every x ∈ D,

3. W (x) ≤ 0 for x ∈ ∂e,

4. 〈DW (x), di〉 ≥ 0 for x ∈ ∂i, i = 1, 2.

As in [9, 10], the construction of classical subsolutions are divided into
two steps. We first identify a subsolution as the minimum of affine functions
and then mollify it to obtain a classical subsolution.

3.8.1 Construction of piecewise affine subsolutions

As we will see, what is needed is a piecewise affine subsolution W̄ with the
following properties.

1. The function W̄ can be written as W̄ = W̄1 ∧ W̄2 ∧ W̄3 where W̄k is
an affine function for each k = 1, 2, 3.

2. D̄ is divided into three regions R1, R2, and R3, such that in each
region Rk, W̄ = W̄k.

3. The subsolution property H(DW̄(x)) = H(DW̄k(x)) ≥ 0 holds for
every x in the interior of region Rk.

4. The Dirichlet boundary inequality W̄ (x) ≤ 0 for x ∈ ∂e.

5. The Neumann boundary inequality 〈DW̄(x), di〉 ≥ 0, whenever x ∈ ∂i

and DW̄ (x) exists.

This can be easily achieved – indeed, fixing an arbitrary δ > 0, one can
let, for each k,

W̄ δ
k (x) .= 〈rk, x〉+ 2γ − kδ, (3.12)

where the rk are depicted in Figure 3. It is not difficult to check that

W̄ δ .= W̄ δ
1 ∧ W̄ δ

2 ∧ W̄ δ
3

satisfies all the requirements for all small δ > 0.

Remark 3.8. As will be discussed further in Remark 3.15, the value of the
subsolution W̄ δ at x = 0 is important and we would like it to be as close to
the optimal decay rate as possible. But

W̄ δ(0) = 2γ − 3δ = “optimal decay rate”− 3δ.

Therefore, δ will be taken as a small positive number.
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Figure 4: Piecewise affine subsolution

Remark 3.9. Asymptotically optimal schemes can be found by letting ε
and δ depend on n. This is discussed in Subsection 3.8.5.

Remark 3.10. The failure of the boundary inequality along the x1 axis,
which corresponds to the existence of a boundary layer in the prelimit which
vanishes in the limit, requires the introduction of W̄ δ

2 , which perturbs the
gradient in a neighborhood of this axis. A similar perturbation is not re-
quired along the x2 axis, since the boundary inequality already holds there.
W̄ δ

3 is introduced to ensure that both boundary conditions hold in a neigh-
borhood of the origin.

Remark 3.11. There are many different choices in the construction of piece-
wise affine subsolutions. For example, if one replaces r2 by r̄2 (see Figure 3)
in the definition of W̄ δ

2 , then the resulting function will also have the desired
properties. This flexibility can be exploited to simplify the construction of
schemes, though as one might expect the particular choices will have some
effect on the performance, and indeed arguments can be made to support
particular choices on this basis. However, a discussion on this issue is too
detailed for the present paper, and we refer to the reader to [16] for more
information.

3.8.2 Mollification

There are different ways to mollify the piecewise affine subsolution W̄ δ. We
will adopt a mollification called exponential weighting that is specialized here
to the minimum of a finite set of smooth functions. For future reference, we
describe the mollification in its general form.
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Consider a finite collection of continuously differentiable functions {h1, h2, . . . , hK}
and let

h
.= h1 ∧ h2 ∧ · · · ∧ hK .

Fix a small positive number ε and define

hε(x) .= −ε log
K∑

k=1

exp
{
−1

ε
hk(x)

}
.

We have the following result, whose proof is straightforward and can be
found in [9, Section 3.3].

Lemma 3.12. For any ε > 0, hε is continuously differentiable with

Dhε(x) =
K∑

k=1

ρε
k(x)Dhk(x),

where
ρε

i (x) .=
exp {−hi(x)/ε}∑K

k=1 exp {−hk(x)/ε} .

Furthermore, we have the uniform bounds

−Kε ≤ hε(x) − h(x) ≤ 0

for every x.

Note that ρε(x) .= (ρε
1(x), ρε

2(x), . . . , ρε
K(x)) defines a probability vector in

the sense that ρε
k(x) ≥ 0 and

K∑
k=1

ρε
k(x) ≡ 1.

Remark 3.13. A well-known general mollification method, as in the clas-
sical PDE literature, is to integrate h against a smooth convolution kernel.
However, we do not recommend such an approach because it involves nu-
merical integrations, which can be computationally demanding, especially
in high dimensions. In contrast, the computations involved in exponential
weighting are simple and easy to implement.
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3.8.3 The classical subsolution

Applying this mollification to W̄ δ , we define

W ε,δ(x) .= −ε log
3∑

k=1

exp
{
−1

ε
W̄ δ

k (x)
}

. (3.13)

Thanks to Lemma 3.12, W ε,δ is continuously differentiable with

DW ε,δ(x) =
3∑

k=1

ρ
ε,δ
k (x)rk, (3.14)

where

ρε,δ
i (x) .=

exp
{−W̄ δ

i (x)/ε
}

∑3
k=1 exp

{−W̄ δ
k (x)/ε

} . (3.15)

We should notice that with this mollification, the function W̄ ε,δ is not pre-
cisely a classical subsolution, but only approximately. Indeed, Lemma B.1
states that the Neumann boundary conditions 〈DW ε,δ, di〉 ≥ 0 are not sat-
isfied for x ∈ ∂i. However, the lemma also indicates that they are “approx-
imately” satisfied in the sense that, for x ∈ ∂i,

〈DW ε,δ(x), di〉 ≥ −ε̄

for some small positive number ε̄ as long as ε/δ is chosen small. The reason
for this violation of the subsolution property is that the exponential weight-
ing is not a “local” smoothing. It can be avoided if one uses integration
against a convolution kernel with small support, but the advantages of the
exponential weighting outweigh the minor additional complications in the
analysis introduced by this error.

3.8.4 The importance sampling estimator and its asymptotics

For each k, let Θ̄∗
k is the saddle point change of measure that corresponds

to the affine function W̄k, or equivalently,

Θ̄∗
k

.= Θ̄∗(DW̄k) = Θ̄∗(rk) ∈ P+(V),

where Θ̄∗(·) is as defined in Proposition 3.4. Straightforward calculation
yields that

Θ̄∗
1 = (µ2, µ1, λ), Θ̄∗

2 =
1

λµ1 + 2µ2
2

(
µ2

2, λµ1, µ
2
2

)
, Θ̄∗

3 = (λ, µ1, µ2).
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The change of measure based on the W ε,δ is just a state-dependent mix-
ture of Θ̄∗

k. More precisely, define a stochastic kernel Θ̄ε,δ [·|·] by

Θ̄ε,δ[·|x] .=
3∑

k=1

ρε,δ
k (x)Θ̄∗

k ∈ P+(V), (3.16)

and for each fixed n, let
Θ̄n[·|·] ≡ Θ̄ε,δ[·|·]. (3.17)

In other words, the importance sampling algorithm simulates Y (k + 1), con-
ditional on the sample history {Y (j) : 1 ≤ j ≤ k}, from the distribution
Θ̄ε,δ [·|Xn(k)], where Xn is the state process as defined in (3.4). The impor-
tance sampling estimator p̂n is then given by (3.5).

We have the following result regarding its asymptotic performance, whose
proof is deferred to Appendix B.

Theorem 3.14. There exist a pair of positive constants (A, B) that only
depend on the system parameters (λ, µ1, µ2) such that, provided ε/δ < B,
the second moment of the importance sampling estimator p̂n satisfies

lim inf
n

−1
n

log[2nd moment of p̂n] ≥ 2γ − F (ε, δ),

where
F (ε, δ) .= 3ε + 3δ + A exp{−δ/ε}.

Since 2γ is the optimal decay rate for the second moment, the theorem
suggest that the importance sampling algorithm is nearly asymptotically
optimal as long as F (ε, δ) is made small. This can be achieved if one chooses
δ small, and ε small compared to δ.

Remark 3.15. The proof of Theorem 3.14 indeed shows that the asymptotic
decay rate of the second moment of p̂n is bounded from below by

W ε,δ(0) − A exp{−δ/ε}.

The presence of the term A exp{−δ/ε} is due to the fact that W ε,δ is only
“approximately” a classical subsolution; see Section 3.8.3. It says that the
performance of an importance sampling scheme based on a subsolution is
largely characterized by the value of the subsolution at x = 0. Similar results
were obtained in [9, 10].
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Remark 3.16. The formula of F also provides an interesting relation be-
tween ε and δ. For each fixed small ε, it is not difficult to check that F (ε, ·)
is minimized at

δ = −ε log ε + ε log
A

3
≈ −ε log ε.

This suggests that a good strategy is to set δ = −ε log ε. Note that in this
case, when ε is small, so is δ, even though δ is comparatively much larger.

3.8.5 Asymptotic optimality

The previous section provides a nearly asymptotically optimal importance
sampling algorithm. It is good enough for many practical purposes where
n is large but not exceedingly large. However, one would still like to see an
algorithm that gives optimality. This only requires a slight modification.

Instead of using a fixed pair of parameters ε and δ for all n, we now allow
them to vary depending on n and denote them by εn and δn. For each n,
we use the change of measure based on W εn,δn . That is, for each n, define
the stochastic kernel

Θ̄εn,δn [·|x] .=
3∑

k=1

ρεn,δn

k (x)Θ̄∗
k ∈ P+(V), (3.18)

and let
Θ̄n[·|·] ≡ Θ̄εn,δn [·|·]. (3.19)

Abusing the notation a bit, we again denote by p̂n the corresponding im-
portance sampling estimator.

Theorem 3.17. The importance sampling estimator p̂n is asymptotically
optimal, that is

lim
n

−1
n

log[2nd moment of p̂n] = 2γ,

provided that δn → 0, εn/δn → 0, and nεn → ∞.

Remark 3.16 suggests that a good choice is to set δn = −εn log εn. In
this case, asymptotic optimality follows if εn → 0 and nεn → ∞.

3.8.6 Further remarks on the importance sampling algorithms

The computation of the weights {ρε,δ
k } or {ρεn,δn

k } is very simple. As a
consequence, the dynamic importance sampling algorithms based on (3.16)-
(3.17) or (3.18)-(3.19) are practically as fast as the standard heuristic where
a constant change of measure is used.
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It is possible that one can associate other changes of measure with sub-
solutions. For example, one can define Θ̄n[·|x] ≡ Θ̄∗(DW ε,δ(x)) in lieu of
(3.16)-(3.17), and the resulting algorithms will have similar asymptotic per-
formance. However, the use of mixtures such as (3.16) is computationally
more convenient. This is especially the case when the change of measure
is not easily obtainable. For example, for a system with Markov modu-
lated arrival and service rates, the computation of the change of measure
appropriate to a single gradient p requires solving an eigenvalue/eigenvector
problems. If we smooth first and then compute the change of measure suit-
able for each point x, then many such problems must be solved. In contrast,
mixtures like (3.16) only require the computation of the changes of measure
that correspond to the finite collection of vectors rk.

3.9 Numerical results

In this section we present some numerical results in the case where λ = 0.1,
µ1 = µ2 = 0.45. The importance sampling algorithm based on the standard
heuristic [14], which amounts to exchanging the arrival rate and the smallest
service rate, leads to estimators with infinite variance [3]. For comparison,
the theoretical value of pn is obtained by iteratively solving the linear system
of equations that characterize this probability, an approach that is feasible
when the system is sufficiently small.

In the simulations, we always set δ = −ε log ε. This choice was suggested
by Remark 3.16, and was experimentally observed to be a good choice for
small ε. We ran simulations for n = 20, with ε = 0.01, 0.02, and 0.03,
respectively. For each ε we present two estimates and each estimate consists
of 20,000 replications. The theoretical is pn = 6.0× 10−12.

In all the tables, “Std. Err.” stands for “Standard Error” and “C.I.” for
“Confidence Interval”. The performance of the dynamic importance sam-
pling schemes based on subsolutions is stable across different simulations,
with estimates that are close to the theoretical value and having small stan-
dard errors.

ε = 0.01 ε = 0.02 ε = 0.03
No.1 No. 2 No.1 No.2 No.1 No. 2

Estimate (×10−12) 5.7 5.5 5.8 6.1 6.3 5.8
Std. Err. (×10−12) 0.4 0.3 0.3 0.5 0.4 0.2
95% C.I. (×10−12) [4.9, 6.4] [4.9,6.1] [5.2,6.4] [5.1,7.1] [5.5, 7.1] [5.3,6.3]

Table 1. IS based on subsolutions, two-node tandem, total population overflow.

Below are more simulation results with n = 30, 40, 50, with ε = 0.02 and
δ = −ε log ε. Each estimate consists of 20,000 replications.
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n = 30 n = 40 n = 50
Theoretical value 2.63 × 10−18 1.03× 10−24 3.80 × 10−31

Estimate 2.73 × 10−18 1.05× 10−24 3.75 × 10−31

Std. Err. 0.18 × 10−18 0.03× 10−24 0.16 × 10−31

95% C.I. [2.37,3.09]× 10−18 [0.99,1.11]× 10−24 [3.43,4.07] × 10−31

Table 2. IS based on subsolutions, two-node tandem, total population overflow.

Remark 3.18. It is not difficult to check that the “thickness” or the height
of the boundary region R2 (see Figure 4) is δ/(2γ). Since in Figure 4 we are
scaling the queue sizes by a factor n, the thickness of the boundary region
in the prelimit will be nδ/(2γ) when unscaled. However, the optimality
conditions nεn → ∞ and εn/δn → 0 in Theorem 3.17 imply that nδn → ∞.
This does not allow the boundary region to be too thin in prelimit. The
need for such control is supported by experimentation, which shows that for
a fixed n, the simulation results tend to deterioriate when ε is too small.

4 Extensions to d-node tandem Jackson networks

The work on the two-node tandem Jackson network can be easily extended
to d-node tandem Jackson networks and more general exit probabilities. To
be more precise, consider a d-node tandem Jackson network with Poisson
arrival rate λ and consecutive exponential service rates µ1, . . . , µd. The state
of the network is described by the embedded Markov chain Z = {Z(k)} =
{(Z1(k), . . . , Zd(k))}, where Zi denotes the queue length at node i. The
system is assumed to be stable, that is, λ < min{µ1, . . . , µd}. Let Γ be a
closed subset of Rd

+ such that 0 �∈ Γ and the closure of Rd
+ \ Γ is compact.

We are interested in the following rare-event probability

pn
.= P{Process Z hits set nΓ before returning to 0, starting from 0}.

Without loss of generality, we assume that λ + µ1 + · · ·+ µd = 1. We also
assume that pn decays exponentially with

lim
n

−1
n

log pn = γ.

4.1 Isaacs equation and the Hamiltonian

In order to write down the Isaacs equation associated with this problem,
we introduce the following notation. The increments of Z take values in
V = {v0, v1, . . . , vd} where the vi’s are d-dimensional vectors defined by

v0 = (1, 0, . . . , 0), [vi]j
.=

⎧⎨
⎩

−1, if j = i

1 , if j = i + 1 and j ≤ d
0 , otherwise

.
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v0 corresponds to an arrival and vi to a service at node i. Similar to (3.4),
the scaled state process Xn .= Z/n satisfies

Xn(k + 1) = Xn(k) +
1
n

π[Xn(k), Y (k + 1)],

where π plays the same role as in (3.3). The sequence {Y (k)} consists of iid
random variables taking values in V with common distribution

Θ = (λ, µ1, . . . , µd) ∈ P+(V).

Define the regions

D
.= {x ∈ Rd

+ : x �∈ Γ, xi > 0, i = 1, . . . , d},
∂i

.= {x ∈ Rd
+ : x �∈ Γ, xi = 0}, i = 1, . . . , d,

and the directions of constraints

di = −vi.

The Isaacs equation is just H(DW ) = 0, where

H(p) = sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
〈p, F(θ)〉+

d∑
i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ)

]
,

with

F(θ) .=
d∑

i=0

θ[vi] · vi

for every θ ∈ P+(V). The boundary conditions are W (x) = 0 for x ∈ Γ and
〈DW (x), di〉 = 0 for x ∈ ∂i.

The following result is an extension of Proposition 3.4, whose proof is
very similar and thus omitted.

Proposition 4.1. For every p ∈ Rd, there exists a saddle point for the
Hamiltonian H, say (Θ̄∗(p), θ∗(p)) ∈ P+(V)× P+(V), given by

Θ̄∗(p)[vi] = θ∗(p)[vi] = N (p) · Θ[vi] exp{−〈p, vi〉/2},
where

N (p) .=

[
d∑

i=0

Θ[vi] exp{−〈p, vi〉/2}
]−1

.

Moreover, the Hamiltonian H is concave and H(p) = 2 logN (p).
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4.2 Subsolutions and importance sampling schemes

The construction of subsolution also proceeds in a similar fashion: we start
with a piecewise smooth “subsolution” and then mollify it by exponential
weighting. We will discuss the general case where the subsolutions can vary
depending on n. To be more specific, let (W̄n

1 , . . . , W̄n
K) be smooth functions

(preferably affine functions) and let

W̄n .= W̄n
1 ∧ · · · ∧ W̄n

K .

The choice of {W̄n
k } should have the following properties:

1. H(DW̄n
k (x)) ≥ 0 for every x ∈ D and every k,

2. W̄n(x) ≤ 0 for every x ∈ Γ,

3. for x on boundary ∂i, 〈DW̄n(x), di〉 ≥ 0 when DW̄n(x) is well defined.

Fix εn > 0. The exponential weighting produces a smooth mollification
of W̄n by

W εn,n(x) .= −εn log
K∑

k=1

exp
{
− 1

εn
W̄n

k (x)
}

,

Similar to the proof of Lemma B.1, it is not difficult to show that, thanks
to the concavity of H and Lemma 3.12, W εn,n satisfies H(DW̄ ε,n(x)) ≥ 0
for x ∈ D and W̄ ε,n(x) ≤ 0 for every x ∈ Γ. However, 〈DW εn,n(x), di〉 ≥ 0
may not hold for x ∈ ∂i. But we should expect these boundary inequalities
to be true at least approximately, thanks to the third property of {W̄n

k }.
For each n, the importance sampling change of measure based on W εn,n

is as follows. Let

ρεn,n
i (x) .=

exp
{−W̄n

i (x)/εn

}
∑K

k=1 exp
{−W̄n

k (x)/εn

} ,

and
Θ̄∗,n

k (x) .= Θ̄∗(DW̄n
k (x)) ∈ P+(V)

where Θ̄∗(·) is as defined in Proposition 4.1. The importance sampling
change of measure is determined by the stochastic kernel

Θ̄n[·|·] ≡ Θ̄εn,n[·|x] .=
K∑

k=1

ρεn,n
k (x)Θ̄∗,n

k (x) ∈ P+(V).
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That is, the conditional distribution of Y (k + 1), given the sample history
{Y (1), . . . , Y (k)}, is just Θ̄n[·|Xn(k)]. We denote by p̂n the corresponding
importance sampling estimator.

The following result is an extension of Theorem 3.17. The proof is very
similar and thus omitted.

Theorem 4.2. We assume that {W̄n
k (x)} has uniformly bounded first and

second derivatives for x ∈ D and that there exists ε̄n ≥ 0 such that for
x ∈ ∂i, 〈DW εn,n(x), di〉 ≥ −ε̄n. We also assume that lim infn W̄n(0) ≥ 2γ.
Then the importance sampling estimator p̂n is asymptotically optimal, i.e.,

lim
n

−1
n

log[2nd moment of p̂n] = 2γ,

provided that εn → 0, ε̄n → 0, and nεn → ∞.

In the previous two-node tandem network we have taken W̄n
k (x) =

〈rk, x〉+ 2γ − kδn. For this choice we can set ε̄n = 2γ exp{−δn/εn} thanks
to Lemma B.1, and Theorem 4.2 reduces to Theorem 3.17.

Remark 4.3. One can also write down a result similar to Theorem 3.14
for the case where W̄n

k ≡ W̄k and εn ≡ ε, ε̄n ≡ ε̄. The corresponding
importance sampling estimator, still denoted by p̂n, will satisfy

lim inf
n

−1
n

log[2nd moment of p̂n] ≥ W̄ (0)− (Kε + Cε̄)

where C is a constant only depends on the system parameter Θ, under the
condition that ε̄ is small enough.

4.3 Example and numerical results

In this section we study two examples: the individual buffer overflow for
two-node tandem Jackson network and total population overflow for d-node
tandem Jackson network.

4.3.1 Two-node tandem networks with individual buffer overflow

In this section we consider the two-node tandem queueing (d = 2) networks
with Θ = (λ, µ1, µ2), and the quantity of interest is

pn
.= {size of queue 1 exceeds B1n or size of queue 2 exceeds B2n

before the system returns to empty state, starting from 0}.
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One can think of Bin as the individual buffer size for node i. In the notation
we just introduced, it amounts to Γ = {x ∈ R2

+ : x1 ≥ B1 or x2 ≥ B2}.
Assuming λ+µ1 +µ2 = 1 and λ < min{µ1, µ2}, we have (following a similar
argument in [11])

γ
.= lim

n
−1

n
log pn = min

i=1,2
Bi log

µi

λ
.

We consider piecewise affine subsolutions that take the form W̄n .= W̄n
1 ∧

W̄n
2 ∧ W̄n

3 where
W̄n

k (x) .= 〈rk, x〉+ 2γ − kδn,

for some small positive constants δn. The choice of {rk} and its correspond-
ing change of measure {Θ̄∗(rk)} are given in the table below.

µ1 ≥ µ2 µ1 < µ2

r1

r2

r3

H(q) ≥ 0

q1

q2
r2

r1

q1

q2

r3

H(q) ≥ 0

Figure 5: The choice of {rk}

rk Θ̄∗(rk)

µ1 ≥ µ2

r1 = 2 log(µ2/λ)(−1,−1)
r2 = 2 log(µ1/λ)(−1, 0)
r3 = (0, 0)

(µ2, µ1, λ)
(µ1, λ, µ2)
(λ, µ1, µ2)

µ1 < µ2

r1 = (−2 log(µ1/λ),−2 log(µ2/λ))
r2 = 2 log(µ1/λ)(−1, 0)
r3 = (0, 0)

(µ1, µ2, λ)
(µ1, λ, µ2)
(λ, µ1, µ2)

It is not difficult to check that H(DW̄n
k (x)) = H(rk) = 0 and the

function W̄n equals W̄k in region Rk (see the figure below). Furthermore,
W̄n(x) ≤ 0 for every x ∈ Γ and 〈DW̄n(x), di〉 ≥ 0 whenever x ∈ ∂i and
DW̄n is well defined. As in Lemma B.1, it is also simple to show that the
exponential weighting mollification W εn,n satisfies

〈DW εn,n(x), di〉 ≥ −ε̄n
.= −2 log[(µ1 ∨ µ2)/λ] exp{−δn/εn} (4.1)

25



for x ∈ ∂i. Thanks to Theorem 4.2, the importance sampling estimator is
asymptotically optimal if δn → 0, εn/δn → 0, and nεn → ∞.
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B1

x1

x2

B2

r1

r2

R3

R1

R2

d1

d2

∂2

∂1

Γ

D

B1

x1

x2

B2

r1

r2

R3

R1

R2

d1

d2

∂2

∂1

D

Γ

µ1 ≥ µ2 µ1 < µ2

Figure 6: Piecewise affine function

4.3.2 d-node tandem networks with total population overflow

In this section we consider the total population overflow for a d-node tandem
Jackson network with d ≥ 2, that is, Γ = {x ∈ R+

d : x1 + x2 + · · ·+ xd ≥ 1}
and

pn
.= P {network total population reaches n before returning to 0,

starting from 0} .

Specializing to the case d = 2 (and assuming µ1 ≥ µ2), the results stated
in this section coincide with those of Section 3. Let µ̄

.= µ1 ∧ µ2 . . . ∧ µd.
Assuming λ < µ̄ and λ + µ1 + · · ·+ µd = 1, we have [11]

γ
.= lim

n
−1

n
log pn = log

µ̄

λ
.

Note that unlike Section 3, there is no assumption here that the service
rates be ordered in any way. That assumption was used in Section 3 only
to simplify the presentation.

For any fixed n, we consider piecewise affine subsolutions of form W̄n =
W̄n

1 ∧ · · · ∧ W̄n
d+1 where

W̄n
k (x) .= 〈rk, x〉+ 2γ − kδn

for some small positive constant δn and

[rk]i
.=
{ −2γ, if 1 ≤ i ≤ d + 1 − k

0 , otherwise
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for 1 ≤ k ≤ d and rd+1 = 0. The change of measure corresponding to rk is

Θ̄∗(rk) =
[
1 − (µd+1−k − µ̄)

µ̄ − λ

µ̄

]−1

·
(

µ̄, µ1, . . . , µd−k,
λµd+1−k

µ̄
, µd+2−k, . . . , µd

)

for 1 ≤ k ≤ d, and

Θ̄∗(rd+1) = Θ = (λ, µ1, . . . , µd).

We have the following lemma, whose proof is deferred to Appendix D.

Lemma 4.4. The following properties hold:

1. H(rk) ≥ 0 for every k,

2. W̄n(x) ≤ 0 for all x ∈ Γ,

3. if x ∈ ∂i is such that DW̄n(x) is well defined then 〈DW̄n(x), di〉 ≥ 0,

4. if W εn,n denotes the exponential weighting of W̄n with εn as the mol-
lification parameter, then

〈DW εn,n(x), di〉 ≥ −ε̄n
.= −2γ exp{−δn/εn}

for every x ∈ ∂i.

Invoking Theorem 4.2, the importance sampling schemes corresponding
to W εn,n are asymptotically optimal if δn → 0, εn/δn → 0, and nεn → ∞.

4.3.3 Numerical results

For all the simulations in this section, we set δ = −ε log ε. The justification
for this choice is based on an argument analogous to that of Remark 3.16.

Consider the example of a two-node tandem queue with individual buffer
overflows as presented in Section 4.3.1. For the case of µ1 ≥ µ2, we set
λ = 0.1, µ1 = 0.5, µ2 = 0.4, and B1 = 0.9, B2 = 1. Simulations are
generated for n = 20, 30, 40 with ε = 0.01. Below are the numerical results.
Each estimate consists of 20,000 replications. Again, for comparison the
theoretical value is obtained using an iterative algorithm.
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n = 20 n = 30 n = 40
Theoretical value 4.81 × 10−12 3.97× 10−18 3.47 × 10−24

Estimate 4.83 × 10−12 4.04× 10−18 3.64 × 10−24

Std. Err. 0.20 × 10−12 0.15× 10−18 0.18 × 10−24

95% C.I. [4.43,5.23]× 10−12 [3.74,4.34]× 10−18 [3.28,4.00] × 10−24

Table 3. IS based on subsolutions, two-node tandem, individual buffer overflow, µ1 ≥ µ2

For the case of µ1 < µ2, we set λ = 0.05, µ1 = 0.35, µ2 = 0.6, and B1 = 1,
B2 = 0.6. We run simulations for n = 20, 30, 40 with ε = 0.1, and each
estimate consists of 20,000 replications.

n = 20 n = 30 n = 40
Theoretical value 1.44 × 10−12 4.82× 10−19 1.61 × 10−25

Estimate 1.40 × 10−12 5.01× 10−19 1.85 × 10−25

Std. Err. 0.05 × 10−12 0.29× 10−19 0.21 × 10−25

95% C.I. [1.30,1.50]× 10−12 [4.43,5.59]× 10−19 [1.43,2.27] × 10−25

Table 4. IS based on subsolutions, two-node tandem, individual buffer overflow, µ1 < µ2

As for the total population overflow for general d-node tandem networks
in Section 4.3.2, we run simulations for d = 4 and d = 9. For d = 4, we
set λ = 0.04, µ1 = · · · = µ4 = 0.24, and run simulations for n = 20, 25, 30
with ε = 0.1. Again, each estimate consists of 20, 000 replications, and the
theoretical value is obtained using an iterative algorithm.

n = 20 n = 25 n = 30
Theoretical value 2.04 × 10−12 5.02× 10−16 1.10 × 10−19

Estimate 2.05 × 10−12 5.07× 10−16 1.08 × 10−19

Std. Err. 0.04 × 10−12 0.07× 10−16 0.03 × 10−19

95% C.I. [1.97,2.13]× 10−12 [4.93,5.21]× 10−16 [1.02,1.14] × 10−19

Table 5. IS based on subsolutions, five-node tandem, total population overflow.

For d = 9, we set λ = 0.01, µ1 = · · · = µ9 = 0.11, and run simulations
for n = 20, 25, 30 with ε = 0.12. Each estimate consists of 100,000 replica-
tions. In this case, a benchmark value is obtained using the same dynamic
importance sampling algorithm but with 10 million replications (the itera-
tive algorithm for computing the theoretical value in the case of d = 4 does
not work here because the state space is too large).

n = 20 n = 25 n = 30

Benchmark value 3.18 × 10−14 9.41× 10−19 2.16× 10−23

Estimate 2.93 × 10−14 10.80× 10−19 1.98× 10−23

Std. Err. 0.23 × 10−14 1.30× 10−19 0.30× 10−23

95% C.I. [2.47,3.39] × 10−14 [8.20,13.10]× 10−19 [1.38,2.58]× 10−23

Table 6. IS based on subsolutions, nine-node tandem, total population overflow.
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5 Remarks on general queueing networks

It is possible to formulate a result, analogous to Theorem 4.2, that applies to
general open Jackson networks. However, due to space limitations, we only
present a simple example to illustrate the main idea and refer the interested
readers to [16] for a more general theorem. The major difference between
the theory developed in Sections 3 and 4, which was adequate for tandem
networks, and that of the present section, is that Neumann-type boundary
conditions are not sufficient anymore, and one has to consider the more
elaborate boundary Hamiltonians.

Consider the following two-node Jackson network with feedback. Again
assume Poisson arrivals with rate λ and consecutive exponentially services
with rate µi at node i. However, after being served at node 2, a job has
probability β to be returned to node 1.

λ
µ1 µ2

β

1 − β

Figure 7: Two-node network with feedback

Suppose that the quantity of interest is the probability of total popula-
tion overflow,

pn
.= P {network total population reaches n before returning to 0,

starting from 0} .

Let µ̄
.= µ1∧µ2. Assuming the stability condition λ < µ̄(1−β), and without

loss of generality, λ + µ1 + µ2 = 1, we have [11]

γ
.= lim

n
−1

n
log pn = log

(1 − β)µ̄
λ

.

The goal is to find an efficient importance sampling scheme for the estimation
of pn.

5.1 System dynamics

Let Z = {Z(k)} be the embedded discrete time Markov chain that repre-
sents the queue lengths at the transition epochs of the network. Then the
dynamics of Z can be modeled by

Z(k + 1) = Z(k) + π[Z(k), Y (k + 1)]

29



where {Y (k)} are iid random variables taking values in

V
.= {v0 = (1, 0), v1 = (−1, 1), v2 = (0,−1), v3 = (1,−1)},

and the mapping π is defined as

π[z, y] .=

⎧⎨
⎩

0, if z1 = 0 and y = v1

0, if z2 = 0 and y = v2 or v3

y, otherwise
.

Under the original probability measure P, the distribution of Y (k) is just

Θ .= (λ, µ1, (1− β)µ2, βµ2) ∈ P+(V).

See Figure 8 for an illustration of the boundary dynamics.

v2

v0

v1

z2

z1

v3

Figure 8: State dynamics

5.2 The Isaacs equation and boundary Hamiltonian

We use the same notation as that introduced in Section 3.4. Following
the recipe of Section 3, define the scaled state process Xn(k) .= Z(k)/n.
Dynamic importance sampling schemes are characterized by stochastic ker-
nels Θ̄n[·|·] on V such that the conditional distribution of Y (k + 1), given
{Y (1), . . . , Y (k)}, is just Θ̄n[·|Xn(k)] ∈ P+(V ).

Following the argument in Section 3.5, one can write down the Isaacs
equation H(DW (x)) = 0 for x ∈ D, where

H(p) = sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
〈p, F(θ)〉+

3∑
i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ)

]

30



with

F(θ) .=
3∑

i=0

θ[vi] · vi,

and the Dirichlet boundary condition W (x) = 0 for x ∈ ∂e.
However, as far as the boundaries ∂1 and ∂2 are concerned, the Neumann-

type boundary condition 〈DW (x), di〉 = 0 is not sufficient (more precisely,
it is not sufficient for ∂2, since the direction of constraint is not well defined
on ∂2). Instead one has to resort to a boundary Hamiltonian, which, loosely
speaking, is the Hamiltonian that one obtains using the state dynamics on
the boundary [6]. Consequently, the boundary conditions become

H∂i(DW (x)) = 0, for x ∈ ∂i, i = 1, 2,

where the boundary Hamiltonian H∂i is defined exactly as H except F(θ) is
replaced by Fi(θ) with

F1(θ) =
∑
i�=1

θ[vi] · vi, F2(θ) =
∑
i�=2,3

θ[vi] · vi.

Remark 5.1. Proposition 4.1 can be easily applied to the interior Hamilto-
nian H and the boundary Hamiltonian H∂i to show the existence of saddle
points and the concavity of these Hamiltonians. The formulae for the sad-
dle points are as follows. Let (Θ̄∗(·), θ∗(·)) be the saddle point for H, and(
Θ̄∗

∂i
(·), θ∗∂i

(·)) be the saddle point for H∂i . Then

Θ̄∗(p) = θ∗(p) = N (p) ·
(
λe−

p1
2 , µ1e

p1−p2
2 , (1− β)µ2e

p2
2 , βµ2e

p2−p1
2

)
,

Θ̄∗
∂1

(p) = θ∗∂1
(p) = N1(p) ·

(
λe−

p1
2 , µ1, (1− β)µ2e

p2
2 , βµ2e

p2−p1
2

)
,

Θ̄∗
∂2

(p) = θ∗∂2
(p) = N2(p) ·

(
λe−

p1
2 , µ1e

p1−p2
2 , (1− β)µ2, βµ2

)
,

where N (p), Ni(p) are normalizing constants so that all these vectors are
probability vectors (i.e., elements in P+(V)). Moreover, H(p) = 2 logN (p)
and H∂i(p) = 2 logNi(p).

5.3 Piecewise affine subsolutions and mollification

The definition of a classical subsolution is the same as Definition 3.7, ex-
cept that Neumann boundary inequality 〈DW (x), di〉 ≥ 0 is replaced by
H∂i(DW (x)) ≥ 0 for x ∈ ∂i, i = 1, 2.
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The construction of a piecewise affine subsolution is very similar to that
in Section 3.8.1. Define

r1
.= 2γ(−1,−1), r2

.= 2γ(−1, 0)+ 2(γ − a)(0,−1), r3
.= (0, 0),

where a is given by

a
.=
{

log[µ1/(µ1 + λ − (1 − β)µ2)], if µ1 ≥ µ2

log[µ1/(λ + βµ1)] , if µ1 < µ2
.

µ1 < µ2

H = 0

H∂1 = 0

r3

µ1 ≥ µ2

H = 0

H∂2 = 0

H∂1 = 0

r3

r1

r2

r1

r2

H∂2 = 0

Figure 9: The Hamiltonians and the choice of {rk}

It is not difficult to check that 0 < a ≤ γ. Now let W̄ δ = W̄ δ
1 ∧ W̄ δ

2 ∧ W̄ δ
3

where

W̄ δ
1 (x) .= 〈r1, x〉+ 2γ − δ

W̄ δ
2 (x) .= 〈r2, x〉+ 2γ − 2δ

W̄ δ
3 (x) .= 〈r3, x〉+ 2γ − (1 + 2γ/a)δ.

The exponential weighting of W̄ δ with parameter ε yields a smooth func-
tion

W ε,δ(x) .= −ε log
3∑

k=1

exp
{
−1

ε
W̄ δ

k (x)
}

that satisfies

DW ε,δ(x) =
3∑

k=1

ρε,δ
k (x)rk, ρε,δ

i (x) .=
exp
{−W̄ δ

i (x)/ε
}

∑3
k=1 exp

{−W̄ δ
k (x)/ε

} .

We have the following result, whose proof is deferred to Appendix D.
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x2

1

1

∂1

∂2

R3

R1

R2

r1

r2r3

∂e

Figure 10: The piecewise affine subsolution

Lemma 5.2. For each k we have H(rk) ≥ 0, and the function W ε,δ satisfies

1. H(DW ε,δ(x)) ≥ 0 for x ∈ D,

2. W ε,δ(x) ≤ 0 for x ∈ ∂e,

3. for each i = 1, 2, and x ∈ ∂i,

H∂i(DW ε,δ(x)) ≥
3∑

k=1

ρ
ε,δ
k (x)H∂i(rk) ≥ −C̄ exp{−δ/ε}

for some constant C̄ that only depends on the system parameter Θ.

5.4 The importance sampling scheme and its asymptotics

The importance sampling scheme based on W̄ ε,δ is as follows. Define the
stochastic kernel Θ̄ε,δ [·|·] on V by

Θ̄ε,δ[·|x] .=
3∑

k=1

ρε,δ
k (x)Θ̄∗(rk), if x ∈ D

and

Θ̄ε,δ [·|x] .=
3∑

k=1

ρε,δ
k (x)Θ̄∗

∂i
(rk), if x ∈ ∂i.

Here the formulae for Θ̄∗ and Θ̄∗
∂i

can be found in Remark 5.1.
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We will allow ε and δ to be n-dependent, denoted by εn, δn, and let
Θ̄n[·|·] ≡ Θ̄εn,δn [·|·]. Denote by p̂n the corresponding importance sampling
estimator. We have the following result, whose proof is very similar to
that of Theorem 3.17. Indeed, in the proof of Theorem 3.17, the Neumann
boundary condition is used to derive (implicitly) certain inequalities associ-
ated with boundary Hamiltonians. Such inequalities can now be obtained
using Lemma 5.2. We omit the details.

Theorem 5.3. The importance sampling estimator p̂n is asymptotically op-
timal if δn → 0, εn/δn → 0, and nεn → ∞.

One can also use a fixed pair of parameters ε and δ for all n, which leads
to a result similar to Theorem 3.14 and suggests a good choice may be to
take δn = −εn log εn.

5.5 Numerical results

For all the simulations in this section, we set ε = 0.02 and δ = −ε log ε. For
the case of µ1 ≥ µ2, we choose λ = 0.1, µ1 = 0.5, µ2 = 0.4, and β = 0.1.
We run simulations for n = 20, 30, 40 and each estimate consists of 20,000
replications. The theoretical value is obtained using a numerical iterative
algorithm.

n = 20 n = 30 n = 40
Theoretical value 9.60 × 10−11 2.66× 10−16 7.27 × 10−22

Estimate 9.31 × 10−11 2.60× 10−16 7.33 × 10−22

Std. Err. 0.17 × 10−11 0.07× 10−16 0.33 × 10−22

95% C.I. [8.97,9.65]× 10−11 [2.46,2.74]× 10−16 [6.67,7.99] × 10−22

Table 7. IS based on subsolutions, two-node tandem with feedback, µ1 ≥ µ2

For the case of µ1 < µ2, we choose λ = 0.1, µ1 = 0.43, µ2 = 0.47, and
β = 0.2. We run simulations for n = 20, 30, 40 and each estimate consists of
20,000 replications.

n = 20 n = 30 n = 40
Theoretical value 4.39× 10−10 2.13 × 10−15 9.60 × 10−21

Estimate 4.62× 10−10 1.91 × 10−15 9.88 × 10−21

Std. Err. 0.46× 10−10 0.13 × 10−15 0.87 × 10−21

95% C.I. [3.70,5.54]× 10−10 [1.65,2.17] × 10−15 [8.14,11.64]× 10−21

Table 8. IS based on subsolutions, two-node tandem with feedback, µ1 < µ2
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A Appendix. A large deviation result

In this appendix we prove a useful large deviation result that may be of some
independent interest. For completeness, recall the definition of process Z by
(3.2):

Z(k + 1) = Z(k) + π[Z(k), Y (k + 1)]

where {Y (k)} is a sequence of iid random variables taking values in V =
{v0, v1, v2} with distribution Θ = (λ, µ1, µ2). Define the hitting times

σn
.= inf{k ≥ 0 : Z1(k) + Z2(k) = n},

σ0
.= inf{k ≥ 0 : Z1(k) + Z2(k) = 0}.

These quantities differ slightly from Tn and T0, which are defined only for
the initial condition 0 and which use k > 0 in the definition of T0. To ease
notation, let

Zn
.=
{
(z1, z2) ∈ Z2

+ : z1 + z2 ≤ n
}

.

We have the following result.

Proposition A.1. There exists a constant c > 0, which only depends on
the system parameter (λ, µ1, µ2), such that

lim sup
n

sup
z∈Zn

1
n

logEz

[
ec(σn∧σ0)

]
< ∞.

Here Ez denotes expectation conditioned on Z(0) = z.

The main difficulty in proving such a result is that the definition of
σ0 requires that the state process hit a single point, and that it is not
sufficient to consider instead a small neighborhood of this point. The key
idea to overcome this is to study a closely related one-dimensional process.
Let S(z) .= Ez[σ0] for every z ∈ Z2

+. S is finite, thanks to the stability
assumption. Define the process

Q(k) .=
{

S(Z(k)), if k ≤ σ0

σ0 − k , if k > σ0
.

In other words, the process Q is random until the process Z hits the origin,
after which Q becomes deterministic and decreases by 1 each step. The
scaled continuous-time piecewise affine interpolation process is just

Qn(t) .=
1
n

Q(�nt�) +
nt − �nt�

n
[Q(�nt� + 1)− Q(�nt�)] ,
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for t ≥ 0.
In order to give a large deviation upper bound for the processes {Qn},

we need the following definitions. Fix any α ∈ R. For each z ∈ Z2
+, define

h(z; α) .= logEz exp{α(Q(1)− Q(0))} (A.1)

and
H(α) .= sup

z∈Z2
+

h(z; α). (A.2)

Clearly, H is convex since h(z; ·) is convex for each z. The convex conjugate
of H is denoted by L, or,

L(β) .= sup
α∈R

[αβ − H(α)] . (A.3)

The function L is non-negative since H(0) = 0, and it will serve as a local
rate function. For any fixed time T ≥ 0, let C([0, T ]; R) be the Polish space
of continuous functions on interval [0, T ] equipped with the supremum metric
ρ. Define a mapping IT : C([0, T ]; R) → R+ ∪ {∞} by

IT (φ) .=
{ ∫ T

0 L(φ̇(t)) dt, if φ is absolutely continuous
∞ , otherwise

,

and its level set

Φx(s) .= {φ ∈ C([0, T ]; R) : φ(0) = x, IT (φ) ≤ s}
for every x ∈ R and s ≥ 0.

We have the following results, whose proofs are deferred to the end of
this appendix. Proposition A.1 is a consequence of these lemmas.

Lemma A.2. There exists a constant M > 0 such that S(z) ≤ M(z1 + z2)
for every z ∈ Z2

+, and the absolute value of all increments of {Q(k)} are
uniformly bounded by M .

Lemma A.3. Let T > 0 be given.

1. IT (φ) ≥ 0 for every φ, and IT (φ) = 0 if and only if φ̇(t) ≡ −1 for a.e.
t ∈ [0, T ].

2. There exists a constant K such that IT (φ) is finite only if φ is Lipschitz
continuous with Lipschitz constant K.

3. Given any compact set F ⊂ R, the union of level sets,
⋃

x∈F Φx(s), is
compact for any s ≥ 0. In particular, IT is lower semicontinuous.

36



4. For any h > 0 and s ≥ 0, we have

lim sup
n

sup
z∈Zn

1
n

log Pz

{
ρ(Qn, ΦS(z)/n(s)) > h

} ≤ −s.

Proof of Proposition A.1. Let M be the constant in Lemma A.2, and K
be the Lipschitz constant in Lemma A.3. For any δ > 0 and T > 0, define

F δ
T

.= {φ ∈ C([0, T ]; R) : φ(0) ∈ [0, M ],−δ ≤ φ ≤ M + δ,

φ is absolutely continuous, |φ̇| ≤ K ∨ M
}

,

which is a compact subset of C([0, T ]; R). Since IT is lower semicontinuous
by Lemma A.3, it attains its minimum on F δ

T . However, it is not difficult to
see that IT (φ) > 0 for any φ ∈ F δ

T if T > M +δ. Indeed, suppose IT (φ) = 0.
Then by Lemma A.3 we have φ(t) = φ(0)− t. If φ(0) ∈ [0, M ] then for any
M + δ < t ≤ T , φ(t) = φ(0)− t < −δ. Thus φ �∈ F δ

T . It follows that, as long
as T > M +δ, min{IT (φ) : φ ∈ F δ

T } > 0, thanks to the lower-semicontinuity
of IT and the compactness of F δ

T .
Now fix an arbitrary δ (the specific value of δ is not important), and let

t0 = M + 4δ. Define

s
.=

1
2

min{It0(φ) : φ ∈ F 2δ
t0
} > 0.

For any x and φ ∈ Φx(s), by Lemma A.3 again, φ is Lipschitz continuous
with |φ̇| ≤ K. However, Φx(s) ∩ F 2δ

t0 = ∅ by definition. Therefore, for any
x ∈ [0, M ] and φ ∈ Φx(s), we must have

inf{t ≥ 0 : φ(t) �∈ [−2δ, M + 2δ]} ≤ t0. (A.4)

Define the following stopping time

τ δ
n

.= inf{t ≥ 0 : Qn(t) �∈ [−δ, M + δ]}.

Thanks to Lemma A.2, each increment of {Q(k)} is uniformly bounded in
absolute value by M , which in turn implies that Qn has Lipschitz continuous
sample paths and |Q̇n| ≤ M . Moreover, for any initial condition Z(0) = z ∈
Zn, Lemma A.2 implies Qn(0) = S(z)/n ∈ [0, M ]. It follows that

Pz

(
τ δ
n > t0

)
= Pz

(
Qn ∈ F δ

t0

)
.
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Thanks to equation (A.4), for every Qn ∈ F δ
t0

, we have

ρ(Qn, ΦS(z)/n(s)) > δ,

Therefore,
Pz(τ δ

n > t0) ≤ Pz

(
ρ(Qn, ΦS(z)/n(s)) > δ

)
However, it follows from Lemma A.2 that {σn ∧ σ0 > nt0} ⊂ {τ δ

n > t0} for
n ≥ M/δ. As a consequence,

lim sup
n

sup
z∈Zn

1
n

log Pz(σn ∧ σ0 > nt0)

≤ lim sup
n

sup
z∈Zn

1
n

log Pz(τ δ
n > t0)

≤ lim sup
n

sup
z∈Zn

1
n

log Pz

(
ρ(Qn, ΦS(z)/n(s)) > δ

)
≤ −s,

here the last inequality is by Lemma A.3. In particular,

sup
z∈Zn

Pz(σn ∧ σ0 ≥ �nt0� + 1) ≤ sup
z∈Zn

Pz(σn ∧ σ0 > nt0) ≤ e−ns/2

for n big enough. Let kn
.= �nt0� + 1. Thanks to the Markov property, for

all sufficiently large n and all j ≥ 0

sup
z∈Zn

Pz(σn ∧ σ0 ≥ jkn) ≤ e−jns/2.

Let c be any constant such that 0 < c < s/(4t0). We have, for n big enough,
ckn ≤ ns/4, which implies that

Ez

[
ec(σn∧σ0)

]
=

∞∑
j=0

(j+1)kn−1∑
i=jkn

eciPz(σn ∧ σ0 = i)

≤ eckn

∞∑
j=0

ecjknPz(jkn ≤ σn ∧ σ0 ≤ (j + 1)kn − 1)

≤ eckn

∞∑
j=0

e−j(ns/2−ckn)

≤ eckn

∞∑
j=0

e−jns/4

= eckn
1

1 − e−ns/4
.
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Therefore,

lim sup
n

sup
z∈Zn

1
n

logEz

[
ec(σn∧σ0)

]
≤ lim

n

ckn

n
+ lim

n

1
n

log
1

1 − e−ns/4
= ct0.

This completes the proof.

It remains to show Lemmas A.2 and A.3. The proof is technical and we
need to investigate the processes in great detail. We begin with the following
result, whose proof is a straightforward consequence of the definition of Q(k)
and thus omitted.

Lemma A.4. Let Fk
.= σ(Z(0), Y (1), . . . , Y (k)). Then

Ez[Q(k + 1)− Q(k)|Fk] = −1

for every z ∈ Z2
+ and every k ≥ 0.

The next lemma is concerned with the monotonicity of the sample path
with respect to the initial conditions. To be more precise, for z̄, z ∈ Z2

+, we
say z̄ ≤ z if the inequality holds component-wise. Also for z ∈ Z2

+, denote
by Qz the sample path corresponding to initial condition z, that is,

Qz(0) = z, Qz(k + 1) = Qz(k) + π[Qz(k), Y (k + 1)].

Lemma A.5. Define g : Z2
+ → Z+ by g(z) = z1 + z2. Given any z̄, z ∈ Z2

+

such that z̄ ≤ z,

Qz̄(k) ≤ Qz(k)
g (Qz(k))− g

(
Qz̄(k)

) ≤ g(z)− g(z̄)

for every k ≥ 0.

Proof. We use induction. The claim is trivial for k = 0. Assume for now
that it holds for some k ≥ 0. Introduce the following notation:

Γ .= {z ∈ Z2
+ : z1 > 0, z2 > 0},

Γ1
.= {z ∈ Z2

+ : z1 = 0, z2 > 0},
Γ2

.= {z ∈ Z2
+ : z1 > 0, z2 = 0}.

We consider the following possible scenarios separately: (i) Qz̄(k) ∈ Γ; (ii)
Qz̄(k) ∈ Γ1; (iii) Qz̄(k) ∈ Γ2; (iv) Qz̄(k) = 0. Since the proofs for these
cases are essentially the same, we choose to only present case (ii). Assume
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that Qz̄(k) ∈ Γ1. Thanks to the induction hypothesis Qz̄(k) ≤ Qz(k), we
must have Qz(k) ∈ Γ1 or Qz(k) ∈ Γ. If Qz(k) ∈ Γ1, or Qz(k) ∈ Γ but
Y (k + 1) �= v1, then π[Qz̄(k), Y (k + 1)] = π[Qz(k), Y (k + 1)] and the claim
holds for k + 1. It only remains to show for the case where Qz(k) ∈ Γ and
Y (k + 1) = v1. In this case Qz̄(k + 1) = Qz̄(k) and Qz(k + 1) = Qz(k) +
v1 = Qz(k) + (−1, 1). But since Qz

1(k) > 0 and Qz̄
1(k) = 0, it follows that

Qz̄(k + 1) ≤ Qz(k + 1). Furthermore, note that g (Qz(k + 1)) = g (Qz(k)),
g (Qz̄(k + 1)) = g (Qz̄(k)). This completes the proof.

Proof of Lemma A.2. Let M̄
.= 2S((1, 0))+ 2S((0, 1)). We would like to

show that for any z ∈ Z2
+ and any i = 0, 1, 2,

|S(z + π[z, vi])− S(z)| ≤ M̄. (A.5)

We can assume that π[z, vi] = vi, since otherwise there is nothing to prove.
First we consider the case i = 2, and let z̄

.= z+v2 = (z1, z2−1) ≤ z. Define
stopping times

T z .= inf{k ≥ 0 : Qz(k) = 0}, T z̄ .= inf{k ≥ 0 : Qz̄(k) = 0}.

Thanks to Lemma A.5, we have Qz̄(k) ≤ Qz(k) for any k ≥ 0, which implies
T z̄ ≤ T z. By the same lemma, for every k ≥ 0, g (Qz(k)) − g (Qz̄(k)) ≤
g(z) − g(z̄) = 1. In particular, for k = T z̄, we have g (Qz(T z̄)) ≤ 1. It
follows that

Qz(T z̄) ∈ {(0, 0), (1, 0), (0, 1)}.
Now the strong Markov property yields

S(z) = S(z̄) + P{Qz(T z̄) = (1, 0)}S((1, 0))+ P{Qz(T z̄) = (0, 1)}S((0, 1)).

Thus |S(z) − S(z̄)| ≤ S((1, 0)) + S((0, 1)) ≤ M̄/2. The proof for the case
i = 0 is almost verbatim. For i = 1, z + vi = z + (−1, 1). One can
use the same argument to prove that |S(z) − S(z + (−1, 0))| ≤ M̄/2 and
|S(z+(−1, 0))−S(z+(−1, 1))| ≤ M̄/2, and then use the triangle inequality
to show |S(z + v1)− S(z)| ≤ M̄ . We omit the details.

It follows from (A.5) that the increment of {Q(k)} is uniformly bounded
by M̄ (note that M̄ ≥ 1 trivially since S(z) ≥ 1 for every z �= 0). Now for
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every z ∈ Z2
+, we can write S(z) as

S(z) = [S(z)− S((0, z1 + z2))] + [S((0, z1 + z2)) − S((0, 0))]

=
z1−1∑
i=0

[S(z + iv1) − S(z + (i + 1)v1)]

+
z1+z2−1∑

i=0

[S(z + z1v1 − iv2))− S(z + z1v1 − (i + 1)v2))].

Thanks to (A.5) again, the absolute value of each summand is bounded by
M̄ . Thus S(z) ≤ M̄(2z1 + z2). Taking M

.= 2M̄ completes the proof.

Proof of Lemma A.3. Recall the definition of h(z; α) and H(α) by (A.1)-
(A.2). We first show that H is convex and Lipschitz continuous with H(0) =
0. To this end, note that h(z; ·) is convex and satisfies h(z; 0) = 0 for each
fixed z ∈ Z2

+. Therefore H is convex with H(0) = 0. Let M be the uniform
bound on the increments of {Q(k)} given by Lemma A.2. It follows easily

|h(z; α)| ≤ M |α|.

Therefore |H(α)| ≤ M |α| for every α, whence H is Lipschitz continuous
(thanks to its convexity).

We claim that H is differentiable at α = 0 and H ′(0) = −1. Indeed,
since h(z; α) is differentiable with respect to α and h(z; 0) = 0, we have

H(α)
α

= sup
z∈Z2

+

h(z; α)
α

= sup
z∈Z2

+

Dαh(z; α[z]),

where α[z] is some number between 0 and α. But thanks to Lemma A.4,
Dαh(z; 0) = Ez[Q(1) − Q(0)] = −1. Moreover, Lemma A.2 and simple
algebra yield that |Dααh(z; α)| ≤ K̄ for some constant K̄ and for every
z ∈ Z2

+ and α ∈ R. It follows that∣∣∣∣H(α)
α

+ 1
∣∣∣∣ ≤ K̄|α|,

which converges to 0 as α → 0, or H is differentiable at α = 0 with H ′(0) =
−1.

The convexity of H and H(0) = 0 imply that L, defined by (A.3), is
convex and non-negative. The Lipschitz continuity of H implies that L
takes value infinity outside a compact set. Lastly, the differentiability of H
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at α = 0 with H ′(0) = −1 imply that L(β) = 0 if and only if β = −1. Parts
1 and 2 of Lemma A.3 follow from these properties of L. The rest of the
lemma follows from Theorem 4.1 of [5] and that

L(β) ≤ l(z; β) .= sup
α

[αβ − h(z; α)].

This completes the proof.

B Appendix. Proof of main theorems

We put the proofs of the main results, Theorem 3.14 and Theorem 3.17,
together in this appendix. These proofs are, in essence, verification type
arguments. We start with a few useful technical results.

Lemma B.1. The function W ε,δ as defined in (3.13) satisfies the following.

1. H(DW ε,δ(x)) ≥ 0 for all x ∈ D,

2. W ε,δ(x) ≤ 0 for all x ∈ ∂e,

3. 〈DW ε,δ(x), di〉 ≥ −2γ exp {−δ/ε} for every x ∈ ∂i.

4. There exists a constant C which only depends on the system parameter
(λ, µ1, µ2), such that ∣∣∣∣∂2W ε,δ(x)

∂xi∂xj

∣∣∣∣ ≤ C

ε

for every x ∈ D̄ and every i, j.

Proof. Thanks to (3.14), the concavity of H (Proposition 3.4), and that
H(rk) ≥ 0, it follows that

H(DW ε,δ(x)) = H

(
3∑

k=1

ρ
ε,δ
k (x)rk

)
≥

3∑
k=1

ρ
ε,δ
k (x)H(rk) ≥ 0.

By Lemma 3.12 we have W̄ ε,δ(x) ≤ W̄ δ(x). But W̄ δ(x) ≤ 0 for x ∈ ∂e by
definition, and so the second claim follows.

Since 〈r1, d1〉 = 〈r3, d1〉 = 0 and 〈r2, d1〉 = −2γ, we have

〈DW ε,δ(x), d1〉 = −2γρ
ε,δ
2 (x).

For x ∈ ∂1, thanks to (3.15) and (3.12), we have

ρε,δ
2 (x) ≤ exp

{−W̄ δ
2 (x)/ε

}
exp
{−W̄ δ

3 (x)/ε
} = exp{−δ/ε}.
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Similarly, for x ∈ ∂2, we have

〈DW ε,δ(x), d2〉 = −2γρε,δ
1 (x) ≥ −2γ

exp
{−W̄ δ

1 (x)/ε
}

exp
{−W̄ δ

2 (x)/ε
} = −2γ exp{−δ/ε}.

This ends the proof of the third claim.
As for the last claim, it follows easily from (3.14) that

∂2W ε,δ(x)
∂xi∂xj

=
3∑

k=1

∂ρε,δ
k (x)
∂xj

〈rk, ei〉,

where ei is the standard i-th unit vector. However,

∂ρε,δ
k (x)
∂xj

=
1
ε
· ρε,δ

k (x)

[
−∂W̄ δ

k (x)
∂xj

+
3∑

m=1

ρε,δ
m (x)

∂W̄ δ
m(x)

∂xj

]

=
1
ε
· ρε,δ

k (x)

[
−〈rk, ej〉+

3∑
m=1

ρε,δ
m (x)〈rm, ej〉

]
.

The last claim follows readily from the definition of {rk} and that ρε,δ
k (x) is

bounded between 0 and 1.

We now define a few functions that are closely related to the interior
Hamiltonian H and the boundary Hamiltonians. For each α ≥ 0 and Θ̄, θ ∈
P+(V), let

L̄(α, p; Θ̄, θ) .= (1 + α)〈p, F(θ)〉+ (1 + 2α)
2∑

i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ).

Similarly, for each j = 1, 2, let

Fj(θ) =
∑
i�=j

θ[vi] · vi,

and define

L̄j(α, p; Θ̄, θ) .= (1 + α)〈p, Fj(θ)〉 + (1 + 2α)
2∑

i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ).

Lemma B.2. Let p ∈ R2 such that H(p) ≥ 0. Then for any given α ≥ 0 we
have

inf
θ∈P+(V)

L̄(α, p; Θ̄∗(p), θ) ≥ 0,

where Θ̄∗(p) is as defined in Proposition 3.4.
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Proof. By definition of L̄, (3.7), and Proposition 3.4, it is not difficult to
check that

L̄(α, p; Θ̄∗(p), θ) = L̄(0, p; Θ̄∗(p), θ) + 2α logN (p)
= L̄(0, p; Θ̄∗(p), θ) + αH(p).

However, thanks to Proposition 3.4 again, we have

inf
θ∈P+(V)

L̄(0, p; Θ̄∗(p), θ) = L̄(0, p; Θ̄∗(p), θ∗(p)) = H(p).

This completes the proof.

Proof of Theorem 3.14. To ease exposition, we will use the notation
W = W ε,δ, ρk = ρε,δ

k , and set ε̄
.= 2γ exp{−δ/ε}. Fix any α > 0. We claim

that, for every x ∈ Dn,

inf
θ∈P+(V)

L̄(α, DW (x); Θ̄n[·|x], θ) ≥ 0. (B.1)

Indeed, thanks to the definition of L̄, the concavity of the logarithmic func-
tion, and that DW (x) =

∑
ρk(x)rk, Θn[·|x] =

∑
ρk(x)Θ̄∗(rk), one can

check that

L̄(α, DW (x); Θ̄n[·|x], θ) ≥
2∑

k=0

ρk(x)L̄(α, rk; Θ̄∗(rk), θ).

Since H(rk) ≥ 0, it follows from Lemma B.2 that

inf
θ∈P+(V)

L̄(α, rk; Θ̄∗(rk), θ) ≥ 0,

which in turn implies (B.1). We claim that for every x ∈ ∂j ∩ D̄n,

inf
θ∈P+(V)

L̄j(α, DW (x); Θ̄n[·|x], θ) ≥ −(1 + α)ε̄. (B.2)

Indeed, thanks to (B.1),

L̄j(α, DW (x); Θ̄n[·|x], θ)
= L̄(α, DW (x); Θ̄n[·|x], θ)− (1 + α)θ[vj ] · 〈DW (x), vj〉
≥ −(1 + α)θ[vj] · 〈DW (x), vj〉.

Recalling that dj = −vj, (B.2) now follows readily from Lemma B.1.
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We now show that inequalities (B.1) and (B.2) imply

inf
θ∈P+(V)

{
2∑

i=0

(1 + α)n
[
W

(
x +

1
n

π(x, vi)
)
− W (x)

]
· θ[vi] (B.3)

+(1 + 2α)
2∑

i=0

θ[vi] log
Θ̄n[vi|x]

Θ[vi]
+ R(θ‖Θ)

}
≥ −(1 + α)

[
C

nε
+ ε̄

]

for every x ∈ D̄n, where C is a constant that only depends on the system
parameter (λ, µ1, µ2). To this end, we consider separately the cases x ∈ Dn

(interior) and x ∈ ∂j∩D̄n (boundary). For x ∈ Dn, π(x, vi) ≡ vi. Therefore,
by a Taylor series expansion,

n

[
W

(
x +

1
n

vi

)
− W (x)

]
·θ[vi] = 〈DW (x), vi〉·θ[vi]+

1
2n

〈vi, D
2W (x̄i)vi〉·θ[vi],

where x̄i is some point on the line connecting x and x + vi. Thanks to
Lemma B.1, the definition of F [see (3.7)], and that ‖vi‖2 ≤ 2, we have

2∑
i=0

n

[
W

(
x +

1
n

vi

)
− W (x)

]
· θ[vi] ≥ 〈DW (x), F(θ)〉 − C

nε
.

This and inequality (B.1) immediately lead to (B.3). The case of x ∈ ∂j∩D̄n

is similar, except now that π(x, vi) = vi if i �= j and π(x, vj) = 0. We omit
the details.

Applying the relative entropy representation (Remark 3.3) to the left-
hand-side of (B.3) and adopting the notation βn

.= C/(nε) + ε̄, we have, for
every x ∈ D̄n,

e−(1+α)βn ·
2∑

i=0

e−(1+α)n[W (x+π(x,vi)/n)−W (x)]

(
Θ[vi]

Θ̄n[vi|x]

)1+2α

· Θ[vi] ≤ 1.

Recalling the definition of Xn in (3.4), this display implies that the process
M = {M(k) : k ≥ 0}, where

M(k) .= e−(1+α)βnke−(1+α)nW (Xn(k))

⎛
⎝k−1∏

j=0

Θ[Y (j + 1)]
Θ̄n[Y (j + 1)|Xn(j)]

⎞
⎠

1+2α

,

is a supermartingale under the original probability measure P. Thanks to
the Optional Sampling Theorem and the non-negativity of M ,

EPM(Tn ∧ T0) ≤ EPM(0) = e−(1+α)nW (0).
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Recalling that p̂n = p̂n · 1{Tn<T0} and W (x) ≤ 0 for x ∈ ∂e,

M(Tn ∧ T0) ≥ M(Tn) · 1{Tn<T0}
= e−(1+α)βnTne−(1+α)nW (Xn(Tn))p̂1+2α

n

≥ e−(1+α)βnTn p̂1+2α
n .

It follows that

EP
[
e−(1+α)βnTn p̂1+2α

n

]
≤ e−(1+α)nW (0).

By Hölder’s inequality,

[2nd moment of p̂n] = EP[p̂n]

≤ EP
[
e−(1+α)βnTn p̂1+2α

n

] 1
1+2α ·EP

[
e

1+α
2α

βnTn · 1{Tn<T0}
] 2α

1+2α

≤ e−
1+α
1+2α

nW (0) · EP
[
e

1+α
2α

βn(Tn∧T0)
] 2α

1+2α
,

which yields

lim inf
n

−1
n

log [2nd moment of p̂n] (B.4)

≥ 1 + α

1 + 2α
W (0) − 2α

1 + 2α
lim sup

n

1
n

log EP
[
e

1+α
2α

βn(Tn∧T0)
]
.

Let c be the constant in Proposition A.1, and let

C̄
.= lim sup

n
sup

x∈D̄n

1
n

logEP
x

[
ec(Tn∧T0)

]
,

It follows immediately from Proposition A.1 that C̄ is finite. Note that (B.4)
holds for any α > 0. In particular, it holds for α

.= ε̄/c. With this choice of
α, we have

1 + α

2α
βn =

1 + α

2α

C

nε
+

ε̄

2
+

c

2
.

Therefore, if ε̄ < c, then for n big enough,

1 + α

2α
βn < c,

and (B.4) yields

lim inf
n

−1
n

log [2nd moment of p̂n] ≥ 1 + α

1 + 2α
W (0)− 2α

1 + 2α
C̄.
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The right-hand-side of the last display equals

W (0)− α

1 + 2α
[W (0) + 2C̄] = W (0) − ε̄

1
c + 2ε̄

[W (0) + 2C̄].

However, since W (0) ≤ 2γ, we have

lim inf
n

−1
n

log [2nd moment of p̂n] ≥ W (0)− ε̄
1
c
[2γ + 2C̄].

It follows from Lemma 3.12 that

W (0) = W ε,δ(0) ≥ W̄ δ(0)− 3ε = 2γ − 3δ − 3ε. (B.5)

Recall that ε̄ = 2γ exp{−δ/ε}. We conclude the proof by setting A =
2γ[2γ + 2C̄]/c, and to enforce ε̄ < c (which was assumed in the proof) we
set B = 1/ log(2γ/c) if c < 2γ and B = ∞ if c ≥ 2γ.

Proof of Theorem 3.17. It suffices to show that

lim inf
n

−1
n

log [2nd moment of p̂n] ≥ 2γ,

since the other direction is automatic by Jensen’s inequality (see Section 2).
We use the notation Wn = W εn,δn, ρn

k
.= ρεn,δn

k , and ε̄n = exp{−δn/εn}.
The same argument leading to inequality (B.4) gives that, for any strictly
positive sequence {αn},

lim inf
n

−1
n

log [2nd moment of p̂n]

≥ lim inf
n

1 + αn

1 + 2αn
Wn(0)− lim sup

n

2αn

1 + 2αn

1
n

logEP
[
e

1+αn
2αn

βn(Tn∧T0)
]
,

where
βn

.=
C

nεn
+ ε̄n.

In particular, we should choose αn so that

1 + αn

2αn
βn = c, or, αn =

βn

2c − βn
.

Note that αn is strictly positive (at least for n big enough) and αn → 0 since
βn → 0 by assumption. It follows that

lim inf
n

−1
n

log [2nd moment of p̂n] ≥ lim inf
n

Wn(0).

However, by (B.5) Wn(0) ≥ 2γ − 3δn − 3εn. This completes the proof.
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C Appendix. Proof of Proposition 3.4

Fix arbitrarily p ∈ R2. For p ∈ R2 and Θ̄, θ ∈ P+(V), define

L(p; Θ̄, θ) .= 〈p, F(θ)〉+
2∑

i=0

θ[vi] log
Θ̄[vi]
Θ[vi]

+ R(θ‖Θ).

It follows from the definition of relative entropy that

L(p; Θ̄, θ) = 〈p, F(θ)〉 −
2∑

i=0

θ[vi] log
θ[vi]
Θ̄[vi]

+
2∑

i=0

θ[vi] log
θ[vi]
Θ[vi]

+ R(θ‖Θ)

= 〈p, F(θ)〉 − R(θ‖Θ̄) + 2R(θ‖Θ).

We first show that (Θ̄∗(p), θ∗(p)) is a saddle point, or

L(p; Θ̄, θ∗(p)) ≤ L(p; Θ̄∗(p), θ∗(p)) ≤ L(p; Θ̄∗(p), θ)

for every Θ̄, θ ∈ P+(V). The first inequality follows from the non-negativity
of relative entropy, that R(γ‖θ) = 0 if and only if γ = θ, and that Θ̄∗(p) =
θ∗(p). Now we consider the second inequality. It is easy to verify that

log
Θ̄∗(p)[vi]

Θ[vi]
= log N (p)− 1

2
〈p, vi〉,

and

〈p, F(θ)〉 =
2∑

i=0

θ[vi]〈p, vi〉.

Therefore,

L(p; Θ̄∗(p), θ) = logN (p) +
1
2

2∑
i=0

θ[vi]〈p, vi〉 + R(θ‖Θ).

A straightforward calculus computation shows that L(p; Θ̄∗(p), θ), as a func-
tion of θ, attains its minimum at θ = θ∗(p). The second inequality follows
readily.

The existence of the saddle point (Θ̄∗(p), θ∗(p)) implies that

H(p) = L(p; Θ̄∗(p), θ∗(p)) = 2 logN (p),

and that the order of sup and inf can be exchanged, or

H(p) = inf
θ∈P+(V)

sup
Θ̄∈P+(V)

L(p; Θ̄, θ).
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Thus

sup
Θ̄∈P+(V)

L(p; Θ̄, θ) = sup
Θ̄∈P+(V)

[〈p, F(θ)〉 − R(θ‖Θ̄) + 2R(θ‖Θ)
]

= 〈p, F(θ)〉+ 2R(θ‖Θ) − inf
Θ̄∈P+(V)

R(θ‖Θ̄)

= 〈p, F(θ)〉+ 2R(θ‖Θ).

Since H is the infimum of affine functions (of p), it is concave. This completes
the proof.

D Collection of miscellaneous proofs

Proof of Lemma 4.4. Clearly, H(rd+1) = H(0) = 0. For 1 ≤ k ≤ d,
Proposition 4.1 implies that H(rk) = 2 logN (rk) where

1
N (rk)

= µ̄ + µ1 + · · ·+ µd−k +
λµd+1−k

µ̄
+ µd+2−k + · · ·+ µd.

In order to show N (rk) ≥ 1, it suffices to show that

µ̄ +
λµd+1−k

µ̄
≤ λ + µd+1−k,

or equivalently
(µd+1−k − µ̄) (µ̄ − λ) ≥ 0,

which directly follows from the assumptions. Therefore we have H(rk) ≥ 0.
Furthermore, for x ∈ Γ we have

W̄n(x) ≤ W̄n
1 (x) = −2γ(x1 + x2 + · · ·+ xd) + 2γ − δ ≤ −δ < 0.

Now assume x ∈ ∂i for some 1 ≤ i ≤ d. Suppose DW̄n(x) is well
defined, or equivalently, the W̄n

1 (x) ∧ · · · ∧ W̄n
d+1(x) = W̄n

k∗(x) for some
unique k∗ ∈ {1, 2, . . . , d + 1}. In this case, DW̄n(x) = rk∗ , and we wish to
show 〈rk∗, di〉 ≥ 0. However, for every k we have

〈rk, di〉 =
{ −2γ, if k + i = d + 1

0 , otherwise
. (D.1)

Thus it suffices to show that k∗ �= d+1− i. This is true, since the definition
of {rk} and xi = 0 imply

W̄n
d+2−i(x) = 〈rd+2−i, x〉+ γ − (d + 2 − i)δn

= 〈rd+1−i, x〉+ γ − (d + 2 − i)δn

= W̄n
d+1−i(x)− δ

< W̄n
d+1−i(x).
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It remains to show that 〈DW εn,n(x), di〉 ≥ −2γ exp{−δn/εn} for x ∈ ∂i.
We have

DW εn,n(x) =
d+1∑
k=1

ρεn,n
k (x)rk.

Thanks to (D.1), we only need to show ρεn,n
d+1−i(x) ≤ exp{−δn/εn} for x ∈ ∂i.

To this end, observe that

ρεn,n
d+1−i(x) ≤ exp{−W̄n

d+1−i(x)/εn}
exp{−W̄n

d+2−i(x)/εn} = exp{−δn/εn}.

This completes the proof.

Proof of Lemma 5.2. We will only present the proof for the case µ1 < µ2,
and omit the analogous proof for µ1 ≥ µ2.

Assume µ1 < µ2 hereafter, and use the notation W ≡ W ε,δ and ρk = ρε,δ
k .

The formulae in Remark 5.1 yield

H(r1) = 2 logN (r1) = −2 log
[
(1 − β)µ1 + µ1 + βµ2 +

λµ2

µ1

]
.

By assumption λ ≤ (1 − β)µ1 and µ1 < µ2. Therefore(
µ2

µ1
− 1
)

((1− β)µ1 − λ) ≥ 0 ⇒ (1 − β)µ1 +
λµ2

µ1
≤ λ + (1 − β)µ2.

Since λ + µ1 + µ2 = 1, we have H(r1) ≥ 0. Similarly, we have H(r2) = 0
and H(r3) = 0. Thanks to the concavity of H, DW (x) =

∑
k ρk(x)rk, and∑

k ρk(x) = 1, ρk(x) ≥ 0, we have H(DW (x)) ≥ 0. As for x ∈ ∂e, we have
W (x) ≤ 〈r1, x〉+ 2γ − δ = −δ ≤ 0.

It remains to show the part 3. Thanks to the concavity of H∂i , we have,
for x ∈ ∂i,

H∂i(DW (x)) ≥
3∑

k=1

ρk(x)H∂i(rk) =
2∑

k=1

ρk(x)H∂i(rk).

However, it is not difficult to show that

H∂1(r1) ≥ 0, H∂2(r2) = 0.

Therefore, we only need to show ρ2(x) ≤ exp{−δ/ε} for x ∈ ∂1 and ρ1(x) ≤
exp{−δ/ε} for x ∈ ∂2. For x ∈ ∂2, we have x2 = 0 and

ρ1(x) ≤ exp{−W δ
1 (x)/ε}

exp{−W δ
2 (x)/ε} = exp{−δ/ε}.
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For x = (0, x2) ∈ ∂1, we consider two cases: x2 ≤ x∗
2 and x2 > x∗

2 separately,
where x∗

2
.= δ/a. For x2 ≤ x∗

2, we have

ρ2(x) ≤ exp{−W δ
2 (x)/ε}

exp{−W δ
3 (x)/ε} = exp

{
2(γ − a)

ε
x2 +

(
1 − 2γ

a

)
δ

ε

}
≤ exp{−δ/ε}.

Similarly, for x ≥ x∗
2, we have

ρ2(x) ≤ exp{−W δ
2 (x)/ε}

exp{−W δ
1 (x)/ε} = exp

{
−2a

ε
x2 +

δ

ε

}
≤ exp{−δ/ε}.

This completes the proof.
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